
MPRI - Lecture 2-36-1 “Proof of Programs” Project 2018-2019

Computational Real Numbers (v1.1)

This project is to be carried out using the Why3 tool, in combination with automated provers (Alt-
Ergo (v2.0), CVC4 (v1.5) and Z3 (v4.4.1) (Eprover 1.9-1-001)). You can use other automatic provers or
version if you want, if they are freely available and recognized by Why3. You may use Coq for discharging
particular proof obligations, although the project can be completed without it. To get started, you need to
install the latest version of Why3. The installation procedure may be found on the web page of the course.1

The project must be done individually—team work is not allowed. In order to obtain a grade for the
project, you must send an e-mail to francois.bobot@cea.fr and jean-marie.Madiot@inria.fr, no later
than Friday, February 22th, 2018 at 22:00 UTC+1. This e-mail should be entitled “Project”, be signed
with your name, and have as attachment an archive (zip or tar.gz) storing the following items:

• The source file creal.mlw.

• The content of the sub-directory creal generated by Why3. In particular, this directory should
contain session files why3session.xml and why3shapes.gz, and Coq proof scripts, if any.

• A PDF document named report.pdf in which you report on your work. The contents of this report
counts for your grade for the project.

The report must be written in French or English, and should typically consist of 2 to 4 pages. The
structure should follow the sections and the questions of the present document. For each question, detail
your approach, focusing in particular on the design choices that you made regarding the implementations
and specifications. In particular, loop invariants and assertions that you add should be explained in your
report: what they mean and how they help to complete the proof.

A typical answer to a question or step would be: “For this function, I propose the following implemen-
tation: [give a pseudo-code]. The contract of this function is [give a copy-paste of the contract]. It captures
the fact that [rephrase the contract in natural language]. To proof this code correct, I need to add extra an-
notations [give the loop invariants, etc.] capturing that [rephrase the annotations in english]. This invariant
is initially true because [explain]. It is preserved at each iteration because [explain]. The post-condition
then follows because [explain].”

The reader of your report should be convinced at each step that the contracts are the right ones, and
should be able to understand why your program is correct, e.g. why a loop invariant is initially true, why it
is preserved, and why it suffices to establish the post-condition. It is legitimate to copy-paste parts of your
Why3 code in the report, yet you should only copy the most relevant parts, not all of your code. In case you
are not able to fully complete a definition or a proof, you should carefully describe which parts are missing
and explain the problems that you faced.

In addition, your report should contain a conclusion, providing general feedback about your work: how
easy or how hard was it, what were the major difficulties, was there any unexpected result, and any other
information that you think are important to consider for the evaluation of the work you did.

0 Goal

The goal of this project is to prove a small library of “computational” real numbers that provides :

• conversion from integer constant

• addition
1https://francois.bobot.eu/mpri2018/

1

https://francois.bobot.eu/mpri2018/

• negation

• subtraction

• square root

• inverse

It is based on the thesis of Valérie Ménissier-Morain: “ARITHMÉTIQUE EXACTE: Conception, algo-
rithmique et performances d’une implémentation informatique en précision arbitraire”, Chapter 3.

An arithmetic expression—named term in the following—formed with these operations, is interpreted
into a real number via the function interp. The idea of computational real numbers relies on approxima-
tions provided by a function compute: for a term formed with these operations and a positive precision n,
the function compute returns an integer res that satisfies:

(res− 1) ∗ 4−n < interp(t) < (res+ 1) ∗ 4−n

In other words, the result is an approximation of the real interpretation up to 4−n.

1 Axioms

We use the standard library of Why3 for all the definitions of the mathematical functions used. The prop-
erties stated there are sufficient except for the logarithm: we state the following property needed for the
project as an axiom:

∀xy, 0 < x < y =⇒ log(x) < log(y)

2 Functions on Integers

We are going to use the functions from mach.int.Int of the standard library for providing the basic oper-
ations on integers of arbitrary size with the additional functions:

use mach.int.Int

use real.RealInfix

use int.Power

use int.EuclideanDivision as ED

val power2 (l:int)

requires { 0 ≤ l }

ensures { result = power 2 l }

val shift_left (z: int) (l:int) : int

requires { 0 ≤ l }

ensures { result = z * (power 2 l) }

val ediv_mod (x:int) (y:int) : (int, int)

requires { 0 < y }

ensures { let d,r = result in

d = ED.div x y ∧ r = ED.mod x y }

val shift_right (z: int) (l:int) : int

requires { 0 ≤ l }

ensures { result = ED.div z (power 2 l) }

2

use real.Square

use real.FromInt

use real.Truncate

val function isqrt (n:int) : int

requires { 0 ≤ n }

ensures { result = floor (sqrt (from_int n)) }

1. Give an implementation of power2

2. Give an implementation of shift_left which uses power2

3. Give an implementation of ediv_mod

4. Give an implementation of shift_right which uses ediv_mod

5. Give an implementation of isqrt

You may need to force the provers to prove that a value is the division of two numbers, for that you can
use the following lemma function:

let lemma euclid_uniq (x y q : int) : unit

requires { y > 0 }

requires { q * y ≤ x < q * y + y }

ensures { ED.div x y = q } =

()

3 Difficulty with Non-linear Arithmetic on Real Numbers

The correction of this program depends heavily on mathematical properties that involve multiplication or
division on arbitrary terms. Provers don’t handle them well natively. They usually only support linear
arithmetic, multiplication and division with one constant argument. So we need to guide them.

You could use successive assertions and use the connective by and so.

assert { A by B so C so D }

This assertion is A if it is not split in the Why3 ide, otherwise it splits into four sub-goals: B, B → C,
C → D, and D → A. The advantage compared to multiple assertions is that B, C and D don’t pollute the
context for proving new assertions:

assert { B };

assert { C };

assert { D };

assert { A };

assert { next; it has B, C, D and A in the context }

Another possibility is to use lemma functions. The function euclid_uniq is an example. The lemmas
of the next section are good candidates for lemma functions.

3.1 Power Function

The thesis proves the correction of the algorithm for any base b. Here we are choosing b = 4. We define
the logic function _B as 4n using the pow function from real.PowerReal:

function _B (n:int) : real = pow b (from_int n)

3

We need some properties on this function:

6. prove that _B is positive

7. prove that _B n *. _B m = _B (n+m)

8. prove that _B n *. _B (-n) = 1.

9. prove that 0. ≤. a → sqrt (a *. _B (2*n)) = sqrt a *. _B n

10. prove that 0 ≤ y → _B y = from_int (power 4 y)

11. prove that y < 0 → _B y = inv (from_int (power 4 (-y)))

12. prove that 0 ≤ y → power 2 (2 * y) = power 4 y

4 Computational Real Numbers

The goal is to approximate real numbers by an integer, we use the second definition of the framing:

predicate framing (x:real) (p:int) (n:int) =

(from_int p -. 1.) *. (_B (-n)) <. x <. (from_int p +. 1.) *. (_B (-n))

13. Could you find a reason why this definition is better than the other for automatic provers?

4.1 Addition

We want to implement the function that compute the framing of an addition from the framing a little more
precise of the arguments:

let compute_add (n: int) (ghost x : real) (xp : int) (ghost y : real) (yp : int)

requires { framing x xp (n+1) }

requires { framing y yp (n+1) }

ensures { framing (x+.y) result n } =

compute_round n z (xp + yp)

We use the two following auxiliary functions:

let compute_round (n:int) (ghost z : real) (zp: int)

requires { (from_int zp -. 2.) *. _B (-(n+1)) <. z ≤. (from_int zp +. 2.) *. _B (-(n+1)) }

ensures { framing z result n } =

round_z_over_4 zp

let round_z_over_4 (z : int)

ensures { ((from_int z) -. 2.) *. (_B (-1)) <. from_int result ≤. ((from_int z) +. 2.) *. (_B (-1)) }

=

shift_right (z + 2) 2

14. Prove these three functions

4.2 Subtraction

15. Define and prove the function compute_neg that computes the framing of the negation of a real using
its framing at the same precision

16. Define compute_sub using compute_neg and compute_add

4

4.3 Conversion of Integer Constants

The conversion from an integer constant is in fact simple:

let compute_cst (n: int) (x : int) : int

ensures { framing (from_int x) result n } =

if n = 0 then

x

else if n < 0 then

shift_right x (2*(-n))

else

shift_left x (2*n)

4.4 Square Root

The code is simply:

let compute_sqrt (n: int) (ghost x : real) (xp : int)

requires { 0. ≤. x }

requires { framing x xp (2*n) }

ensures { framing (sqrt x) result n } =

if xp ≤ 0 then

0

else

isqrt xp

We use a proof for the square root different from the one of the thesis. In fact the last case of the proof
in the thesis is applicable to all the previous cases, which simplifies the proof a lot. The idea is to show that
square roots of two successive numbers are close even after taking the floor or ceiling because they are in
the same integer or one of them is an integer. For n ≥ 1 an integer :

V
√
n+ 1W− 1 ≤ T

√
nU ≤ T

√
n− 1U + 1

17. Prove these two relations

18. Prove compute_sqrt

4.5 Compute

We are defining terms as the following algebraic datatype:

type term =

| Cst int

| Add term term

| Neg term

| Sub term term

| Sqrt term

19. define a logic function interp that gives real interpretation of a term with the usual semantic for
each operation.

The function compute has the following contract:

let compute (t:term) (n:int) : int

requires { wf_term t }

ensures { framing (interp t) result n }

5

20. define wf_term that checks that square root is applied only to terms with non negative interpretation.

21. define and prove the compute function

5 Division

We are now supposing that the precision is always smaller than 1, i.e. 0 ≤ n.
The computation is done by successively reducing to simpler cases, finally an argument similar to the

one of square root is used. The algorithm is different from the one of the thesis.

1. negative numbers are handled as positive ones

2. positive real numbers smaller than 1 are handled as real numbers bigger than 1 by multiplying by 4m

with a sufficiently large m

3. positive real numbers larger than 1 are inverted.

So the inverse function is computed using a first auxiliary function:

let inv_simple_simple (ghost x:real) (p:int) (n:int)

requires { framing x p (n+1) }

requires { 0 ≤ n }

requires { 1. ≤. x }

ensures { framing (inv x) result n } =

let k = n + 1 in

let d,r = ediv_mod (power2 (2*(n+k))) p in

if 2*r ≤ p then d else d+1

The proof uses the fact that if the quotient is smaller than the dividend then the quotient
changes of at most 1 when the dividend changes by 1 (div and mod denote Euclidean division
import int.EuclideanDivision as ED):

0 < a =⇒ 0 < b =⇒ ED.div(a, b) < b =⇒

ED.div(a, b+ 1) =

{
(ED.div(a, b))− 1 ED.mod(a, b) < ED.div(a, b)

(ED.div(a, b)) otherwise

0 < a =⇒ 1 < b =⇒ ED.div(a, b) < b− 1 =⇒

ED.div(a, b− 1) =

{
(ED.div(a, b)) + 1 b− 1− ED.div(a, b) ≤ ED.mod(a, b)

(ED.div(a, b)) otherwise

The proof also uses the fact that in the case of inv_simple_simple, ED.div(a, b) ≤ b − 1 −
ED.div(a, b), so the first two cases can’t happen at the same time.

22. Prove these two properties

23. Prove the function inv_simple_simple

The second auxiliary function just changes the ghost part:

6

let inv_simple (ghost x) p m n

requires { 0 ≤ m }

requires { 0 ≤ n }

requires { _B (-m) <. x }

requires { framing x p (n+1+2*m) }

ensures { framing (inv x) result n } =

inv_simple_simple (x *. _B m) p (n+m)

24. Prove the function inv_simple

The sufficiently large m is computed by msd which looks for an approximation of the term strictly larger
than 1 by increasing the precision. By supposing that the term is non-zero we are sure that such m exists
and is smaller than −T(log2(|interp(t)|))U. The logic function log2 is defined in real.ExpLog.

The function msd is mutually recursive with the function compute and it is simpler if it indicates the
sign of the real:

let rec compute (t:term) (n:int) : int

requires { wf_term t }

requires { 0 ≤ n }

ensures { framing (interp t) result n }

=

match t with

| Cst i → ...

| Add t1 t2 → ...

| Neg t1 → ...

| Sub t1 t2 → ...

| Sqrt t1 → ...

| Inv t →
let m,sgn = msd t 0 (compute t 0) in

let p = compute t (n+1+2*m) in

if sgn

then inv_simple x p m n

else

- (inv_simple (-. x) (-p) m n)

end

with msd (t:term) (n:int) (c:int) : (int, bool)

requires { 0 ≤ n }

requires { wf_term t }

requires { interp t 6= 0. }

requires { framing (interp t) c n }

ensures { let m,sgn = result in

0 ≤ m ∧
if sgn then _B (-m) <. interp t else interp t <. -. _B (-m)

}

=

if c = 0 || c = 1 || c = -1 then begin

let c = compute t (n+1) in

msd t (n+1) c

end

else begin

if 1 < c then

7

n, true

else

n, false

end

25. extend the type term, the

26. prove both functions

27. prove the termination of the functions

6 Bonus

The bonus and hard question is to prove the original algorithm from the thesis for the inverse (which uses
ceiling or flooring according to the sign, not rounding) or find a counterexample that breaks it.

7 Extraction

You can extract all your code using:

why3 extract -D ocaml64 -o creal.ml creal.mlw

and execute it.

8

	Goal
	Axioms
	Functions on Integers
	Difficulty with Non-linear Arithmetic on Real Numbers
	Power Function

	Computational Real Numbers
	Addition
	Subtraction
	Conversion of Integer Constants
	Square Root
	Compute

	Division
	Bonus
	Extraction

