
Basics of deductive program verification

Bobot François

Cours MPRI 2-36-1 “Preuve de Programme”

3 décembre 2017

Preliminaries

I Very first question: lectures in English or in French?
I Lectures 1,2,3,4: François Bobot
I Lectures 5,6,7,8: Jean-Marie Madiot
I one week in january, february: lecture replaced by practical

lab, support for project
I Evaluation:

I project P using the Why3 tool (http://why3.lri.fr)
I final exam E : Monday, March 11th, 2018, 16:15, same

room as the lecture.
I final mark = (2E + P + max(E ,P))/4

I internships (stages)
I Slides, lectures notes on web page

http://francois.bobot.eu/mpri2018/

Outline

Introduction, Short History

Classical Hoare Logic
A Simple Programming Language
Hoare Logic
Dijkstra’s Weakest Preconditions

Exercises

“Modern” Approach, Blocking Semantics
A ML-like Programming Language
Blocking Operational Semantics
Weakest Preconditions Revisited

General Objectives

Ultimate Goal
Verify that software is free of bugs

Famous software failures:
http://www.cs.tau.ac.il/~nachumd/horror.html

This lecture
Computer-assisted approaches for verifying that

a software conforms to a specification

http://why3.lri.fr
http://francois.bobot.eu/mpri2018/
http://www.cs.tau.ac.il/~nachumd/horror.html

Some general approaches to Verification

Static analysis, Algorithmic Verification
I model checking (automata-based models)
I abstract interpretation (domain-specific model, e.g.

numerical)

Deductive verification
I formal models using expressive logics
I verification = computer-assisted mathematical proof

Fortunately techniques are cross-fertilizinng

Some general approaches to Verification

Refinement
I Formal models
I Code derived from model, correct by construction

A long time before success

Computer-assisted verification is an old idea
I Turing, 1948
I Floyd-Hoare logic, 1969

Success in practice: only from the mid-1990s
I Importance of the increase of performance of computers

A first success story:
I Paris metro line 14, using Atelier B (1998, refinement

approach)
http://www.methode-b.com/documentation_b/

ClearSy-Industrial_Use_of_B.pdf

Other Famous Success Stories

I Flight control software of A380: Astree verifies absence of
run-time errors (2005, abstract interpretation)
http://www.astree.ens.fr/

I Microsoft’s hypervisor: using Microsoft’s VCC and the Z3
automated prover (2008, deductive verification)
http://research.microsoft.com/en-us/projects/vcc/

More recently: verification of PikeOS

I Certified C compiler, developed using the Coq proof
assistant (2009, correct-by-construction code generated by
a proof assistant)
http://compcert.inria.fr/

I L4.verified micro-kernel, using tools on top of Isabelle/HOL
proof assistant (2010, Haskell prototype, C code, proof
assistant)
http://www.ertos.nicta.com.au/research/l4.verified/

http://www.methode-b.com/documentation_b/ClearSy-Industrial_Use_of_B.pdf
http://www.methode-b.com/documentation_b/ClearSy-Industrial_Use_of_B.pdf
http://www.astree.ens.fr/
http://research.microsoft.com/en-us/projects/vcc/
http://compcert.inria.fr/
http://www.ertos.nicta.com.au/research/l4.verified/

Other Success Stories at Industry

I EDF: Using Frama-C Eva

I Airbus: Using Frama-C WP

I Spark2014: Verification of a subset of Ada program

Outline

Introduction, Short History

Classical Hoare Logic
A Simple Programming Language
Hoare Logic
Dijkstra’s Weakest Preconditions

Exercises

“Modern” Approach, Blocking Semantics
A ML-like Programming Language
Blocking Operational Semantics
Weakest Preconditions Revisited

Syntax: expressions

e ::= n (integer constants)
| x (variables)
| e op e (binary operations)

op ::= + | − | ∗
| = | 6= | < | > | ≤ | ≥
| and | or

I Only one data type: unbounded integers
I Comparisons return an integer: 0 for “false”, −1 for “true”
I There is no division

Consequences:
I Expressions are always well-typed
I Expressions always evaluate without error
I Expressions do not have any side effect

Syntax: statements

s ::= skip (no effect)
| x := e (assignment)
| s ; s (sequence)
| if e then s else s (conditional)
| while e do s (loop)

I Condition in if and while: 0 is “false”, non-zero is “true”
I if without else: syntactic sugar for else skip.

Consequences:
I Statements have side effects
I All programs are well-typed
I There is no possible runtime error: all programs execute

until their end or infinitely

Running Example

Three global variables n, count, and sum

count := 0; sum := 1;

while sum ≤ n do

count := count + 1; sum := sum + 2 * count + 1

What does this program compute?
(assuming input is n and output is count)

Informal specification:
I at the end of execution of this program, count contains the

square root of n, rounded downward
I e.g. for n=42, the final value of count is 6.

Propositions about programs

I To formally express properties of programs, we need a
formal specification language (JML, ACSL, SPARK)

I We use standard first-order logic
I syntax of formulas:

p ::= e | p ∧ p | p ∨ p | ¬p | p ⇒ p | ∀v , p | ∃v , p

I v : logical variable identifiers
I e : program expressions, augmented with logical variables

Hoare triples

I Hoare triple : notation {P}s{Q}
I P : formula called the precondition
I Q : formula called the postcondition

Intended meaning
{P}s{Q} is true if and only if:
when the program s is executed in any state satisfying P, then
(if execution terminates) its resulting state satisfies Q

This is a Partial Correctness: we say nothing if s does not
terminates

Examples

Examples of valid triples for partial correctness:
I {x = 1}x := x + 2{x = 3}
I {x = y}x := x + y{x = 2 ∗ y}
I {∃v , x = 4 ∗ v}x := x + 42{∃w , x = 2 ∗ w}
I {true}while 1 do skip{false}

Our running example:

{?n ≥ 0}ISQRT{?count2 ≤ n ∧ n < (count + 1)2}

Running Example: Demo

Demo with the Why3 tool

I http://why3.lri.fr/

I Web interface: http://why3.lri.fr/try/

See file imp_isqrt.mlw

(This is the tool to use for the project, version 1.1.0)

Hoare logic as an Axiomatic Semantics

Original Hoare logic [∼ 1970]
Axiomatic Semantics of programs

Set of inference rules producing triples

{P}skip{P}

{P[x ← e]}x := e{P}

{P}s1{Q} {Q}s2{R}
{P}s1; s2{R}

I Notation P[x ← e] : replace all occurrences of program
variable x by e in P.

Hoare Logic, continued

Frame rule:
{P}s{Q}

{P ∧ R}s{Q ∧ R}
with R a formula where no variables assigned in s occur

Consequence rule:

{P ′}s{Q′} |= P ⇒ P ′ |= Q′ ⇒ Q
{P}s{Q}

I Example: proof of

{x = 1}x := x + 2{x = 3}

Hoare Logic, continued

Rules for if and while :

{P ∧ e 6= 0}s1{Q} {P ∧ e = 0}s2{Q}
{P}if e then s1 else s2{Q}

{I ∧ e 6= 0}s{I}
{I}while e do s{I ∧ e = 0}

I I is called a loop invariant.

http://why3.lri.fr/
http://why3.lri.fr/try/

Example: isqrt(42)

Exercise: prove of the triple

{n ≥ 0} ISQRT {count2 ≤ n ∧ n < (count + 1)2}

Could we do that by hand?

Back to demo: file imp_isqrt.mlw

Warning
Finding an adequate loop invariant is a major difficulty

Beyond Axiomatic Semantics

I Operational Semantics
I Semantic Validity of Hoare Triples
I Hoare logic as correct deduction rules

Operational semantics

[Plotkin 1981, structural operational semantics (SOS)]

I we use a standard small-step semantics
I program state: describes content of global variables at a

given time. It is a finite map Σ associating to each variable
x its current value denoted Σ(x).

I Value of an expression e in some state Σ:
I denoted JeKΣ

I always defined, by the following recursive equations:

JnKΣ = n
JxKΣ = Σ(x)

Je1 op e2KΣ = Je1KΣ JopK Je2KΣ

I JopK natural semantic of operator op on integers (with
relational operators returning 0 for false and −1 for true).

Semantics of statements

Semantics of statements: defined by judgment

Σ, s Σ′, s′

meaning: in state Σ, executing one step of statement s leads to
the state Σ′ and the remaining statement to execute is s′.
The semantics is defined by the following rules.

Σ, x := e Σ{x ← JeKΣ}, skip

Σ, s1 Σ′, s′1
Σ, (s1; s2) Σ′, (s′1; s2)

Σ, (skip; s) Σ, s

Semantics of statements, continued

JeKΣ 6= 0
Σ, if e then s1 else s2 Σ, s1

JeKΣ = 0
Σ, if e then s1 else s2 Σ, s2

JeKΣ 6= 0
Σ, while e do s Σ, (s; while e do s)

JeKΣ = 0
Σ, while e do s Σ, skip

Execution of programs

I : a binary relation over pairs (state,statement)
I transitive closure : +

I reflexive-transitive closure : ∗

In other words:
Σ, s ∗Σ′, s′

means that statement s, in state Σ, reaches state Σ′ with
remaining statement s′ after executing some finite number of
steps.

Running example:

{n = 42, count =?, sum =?}, ISQRT ∗

{n = 42, count = 6, sum = 49}, skip

Execution and termination

I any statement except skip can execute in any state
I the statement skip alone represents the final step of

execution of a program
I there is no possible runtime error.

Definition
Execution of statement s in state Σ terminates if there is a state
Σ′ such that Σ, s ∗Σ′, skip

I since there are no possible runtime errors, s does not
terminate means that s diverges (i.e. executes infinitely).

Semantics of formulas
JpKΣ :
I semantics of formula p in program state Σ

I is a logic formula where no program variables appear
anymore

I defined recursively as follows.

JeKΣ = JeKΣ 6= 0
Jp1 ∧ p2KΣ = Jp1KΣ ∧ Jp2KΣ

...

where semantics of expressions is augmented with

JvKΣ = v
JxKΣ = Σ(x)

Notations:
I Σ |= p : the formula JpKΣ is valid
I |= p : formula JpKΣ holds in all states Σ.

Semantics of formulas

Other presentation of the semantics: JpKΣ :
I inline semantic of first-order formula
I JeKΣ,V with V mapping of logic variables to integers.
I defined recursively as follows.

Jp1 ∧ p2KΣ,V =

{
> if Jp1KΣ,V = > and Jp2KΣ,V = >
⊥

J∀x .eK = > si pour tout v . JeKΣ,V[x←v] = >
...

where semantics of expressions is augmented with

JvKΣ,V = V(v)
JxKΣ,V = Σ(x)

Soundness

Definition (Partial correctness)
Hoare triple {P}s{Q} is said valid if:
for any states Σ,Σ′, if
I Σ, s ∗Σ′, skip and
I Σ |= P

then Σ′ |= Q

Theorem (Soundness of Hoare logic)
The set of rules is correct: any derivable triple is valid.

This is proved by induction on the derivation tree of the
considered triple.
For each rule: assuming that the triples in premises are valid,
we show that the triple in conclusion is valid too.

Completeness
Two major difficulties for proving a program
I guess the appropriate intermediate formulas (for

sequence, for the loop invariant)
I prove the logical premises of consequence rule

Theoretical question: completeness. Are all valid triples
derivable from the rules?

Theorem (Relative Completeness of Hoare logic)
The set of rules of Hoare logic is relatively complete: if the logic
language is expressive enough, then any valid triple {P}s{Q}
can be derived using the rules.

[Cook, 1978]
“Expressive enough” is for example Peano arithmetic
(non-linear integer arithmetic)
Gives only hints on how to effectively determine suitable loop
invariants (see the theory of abstract interpretation [Cousot,
1990])

Annotated Programs

Goal
Add automation to the Hoare logic approach

We augment our simple language with explicit loop invariants

s ::= skip (no effect)
| x := e (assignment)
| s; s (sequence)
| if e then s else s (conditional)
| while e invariant I do s (annotated loop)

I The operational semantics is unchanged.

Weakest liberal precondition

[Dijkstra 1975]

Function WLP(s,Q) :
I s is a statement
I Q is a formula
I returns a formula

It should return the minimal precondition P that validates the
triple {P}s{Q}

Definition of WLP(s,Q)

Recursive definition:

WLP(skip,Q) = Q
WLP(x := e,Q) = Q[x ← e]
WLP(s1; s2,Q) = WLP(s1,WLP(s2,Q))

WLP(if e then s1 else s2,Q) =
(e 6= 0⇒WLP(s1,Q)) ∧ (e = 0⇒WLP(s2,Q))

Definition of WLP(s,Q), continued

WLP(while e invariant I do s,Q) =
I ∧ (invariant true initially)
∀v1, . . . , vk ,

(((e 6= 0 ∧ I)⇒WLP(s, I)) (invariant preserved)
∧((e = 0 ∧ I)⇒ Q))[wi ← vi] (invariant implies post)

where w1, . . . ,wk is the set of assigned variables in statement s
and v1, . . . , vk are fresh logic variables

Examples

WLP(x := x + y , x = 2y) ≡ x + y = 2y

WLP(while y > 0 invariant even(y) do y := y − 2,even(y)) ≡
even(y)∧
∀v , ((v > 0 ∧ even(v))⇒ even(v − 2))

∧((v ≤ 0 ∧ even(v))⇒ even(v))

Soundness

Theorem (Soundness)
For all statement s and formula Q, {WLP(s,Q)}s{Q} is valid.

Proof by induction on the structure of statement s.

Consequence
For proving that a triple {P}s{Q} is valid, it suffices to prove the
formula P ⇒WLP(s,Q).

This is basically what Why3 does

Outline

Introduction, Short History

Classical Hoare Logic
A Simple Programming Language
Hoare Logic
Dijkstra’s Weakest Preconditions

Exercises

“Modern” Approach, Blocking Semantics
A ML-like Programming Language
Blocking Operational Semantics
Weakest Preconditions Revisited

Exercise 1

Consider the following (inefficient) program for computing the
sum a + b.

x := a; y := b;

while y > 0 do

x := x + 1; y := y - 1

(Why3 file to fill in: imp_sum.mlw)
I Propose a post-condition stating that the final value of x is

the sum of the values of a and b
I Find an appropriate loop invariant
I Prove the program.

Exercise 2

The following program is one of the original examples of Floyd.

q := 0; r := x;

while r ≥ y do

r := r - y; q := q + 1

(Why3 file to fill in: imp_euclide.mlw)
I Propose a formal precondition to express that x is

assumed non-negative, y is assumed positive, and a
formal post-condition expressing that q and r are
respectively the quotient and the remainder of the
Euclidean division of x by y .

I Find appropriate loop invariant and prove the correctness
of the program.

Exercise 3

Let’s assume given in the underlying logic the functions div2(x)
and mod2(x) which respectively return the division of x by 2 and
its remainder. The following program is supposed to compute,
in variable r , the power xn.

r := 1; p := x; e := n;

while e > 0 do

if mod2(e) 6= 0 then r := r * p;

p := p * p;

e := div2(e);

(Why3 file to fill in: power_int.mlw)
I Assuming that the power function exists in the logic,

specify appropriate pre- and post-conditions for this
program.

I Find an appropriate loop invariant, and prove the program.

Exercise 4

The Fibonacci sequence is defined recursively by fib(0) = 0,
fib(1) = 1 and fib(n + 2) = fib(n + 1) + fib(n). The following
program is supposed to compute fib in linear time, the result
being stored in y .

y := 0; x := 1; i := 0;

while i < n do

aux := y; y := x; x := x + aux; i := i + 1

I Assuming fib exists in the logic, specify appropriate pre-
and post-conditions.

I Prove the program.

Exercise (Exam 2011-2012)
In this exercise, we consider the simple language of the first
lecture of this course, where expressions do not have any side
effect.

1. Prove that the triple

{P}x := e{∃v , e[x ← v] = x ∧ P[x ← v]}

is valid with respect to the operational semantics.
2. Show that the triple above can be proved using the rules of

Hoare logic.
Let us assume that we replace the standard Hoare rule for
assignment by the rule

{P}x := e{∃v , e[x ← v] = x ∧ P[x ← v]}

3. Show that the triple {P[x ← e]}x := e{P} can be proved
with the new set of rules.

Outline

Introduction, Short History

Classical Hoare Logic
A Simple Programming Language
Hoare Logic
Dijkstra’s Weakest Preconditions

Exercises

“Modern” Approach, Blocking Semantics
A ML-like Programming Language
Blocking Operational Semantics
Weakest Preconditions Revisited

Summary of Previous Section

I Very simple programming language
I program = sequence of statements
I only global variables
I only the integer data type, always well typed

I Formal operational semantics
I small steps
I no run-time errors

I Hoare logic:
I Deduction rules for triples {Pre}s{Post}

I Weakest Liberal Precondition (WLP):
I if Pre⇒WLP(s,Post) then {Pre}s{Post} valid

Next step

Extend the language
I more data types
I logic variables: local and immutable
I labels in specifications

Handle termination issues:
I prove properties on non-terminating programs
I prove termination when wanted

Prepare for adding later:
I run-time errors (how to prove their absence)
I local mutable variables, functions
I complex data types

Extended Syntax: Generalities

I We want a few basic data types : int, bool, real, unit
I Former pure expressions are now called terms
I No difference between expressions and statements

anymore

previous section now
expression term
formula formula
statement expression

Basically we consider
I A purely functional language (ML-like)
I with global mutable variables

very restricted notion of modification of program states

Base Data Types, Operators, Terms

I unit type: type unit, only one constant ()

I Booleans: type bool, constants True,False, operators and,
or, not

I integers: type int, operators +,−, ∗ (no division)
I reals: type real, operators +,−, ∗ (no division)
I Comparisons of integers or reals, returning a boolean
I “if-expression”: written if b then t1 else t2

t ::= val (values, i.e. constants)
| v (logic variables)
| x (program variables)
| t op t (binary operations)
| if t then t else t (if-expression)

Local logic variables

We extend the syntax of terms by

t ::= let v = t in t

Example: approximated cosine

let cos_x =

let y = x*x in

1.0 - 0.5 * y + 0.04166666 * y * y

in

...

Practical Notes

I Theorem provers (Alt-Ergo, CVC4, Z3) typically support
these types

I may also support if-expressions and let bindings

Alternatively, Why3 manages to transform terms and formulas
when needed (e.g. transformation of if-expressions and/or
let-expressions into equivalent formulas)

Syntax: Formulas

Unchanged w.r.t to previous syntax, but also addition of local
binding:

p ::= t (boolean term)
| p ∧ p | p ∨ p | ¬p | p ⇒ p (connectives)
| ∀v : τ, p | ∃v : τ, p (quantification)
| let v = t in p (local binding)

Typing

I Types:
τ ::= int | real | bool | unit

I Typing judgment:
Γ ` t : τ

where Γ maps identifiers to types:
I either v : τ (logic variable, immutable)
I either x : ref τ (program variable, mutable)

Important
I a reference is not a value
I there is no “reference on a reference”
I no aliasing

Typing rules

Constants:

Γ ` n : int Γ ` r : real

Γ ` True : bool Γ ` False : bool

Variables:
v : τ ∈ Γ

Γ ` v : τ

x : ref τ ∈ Γ

Γ ` x : τ

Let binding:

Γ ` t1 : τ1 {v : τ1} · Γ ` t2 : τ2

Γ ` let v = t1 in t2 : τ2

I All terms have a base type (not a reference)
I In practice: Why3, as in OCaml, requires to write !x for

references

Formal Semantics: Terms and Formulas

Program states are augmented with a stack of local
(immutable) variables
I Σ: maps program variables to values (a map)
I Π: maps logic variables to values (a stack)

JvalKΣ,Π = val (values)
JxKΣ,Π = Σ(x) if x : ref τ
JvKΣ,Π = Π(v) if v : τ

Jt1 op t2KΣ,Π = Jt1KΣ,Π JopK Jt2KΣ,Π

Jlet v = t1 in t2KΣ,Π = Jt2KΣ,({v=Jt1KΣ,Π}·Π)

Warning
Semantics is now a partial function

Type Soundness Property

Our logic language satisfies the following standard property of
purely functional language

Theorem (Type soundness)
Every well-typed terms and well-typed formulas have a
semantics

Proof: induction on the derivation tree of well-typing

Expressions: generalities

I Former statements are now expressions of type unit
Expressions may have Side Effects

I Statement skip is identified with ()

I The sequence is replaced by a local binding
I From now on, the condition of the if then else and the

while do in programs is a Boolean expression

Syntax

e ::= t (pure term)
| e op e (binary operation)
| x := e (assignment)
| let v = e in e (local binding)
| if e then e else e (conditional)
| while e do e (loop)

I sequence e1; e2 : syntactic sugar for

let v = e1 in e2

when e1 has type unit and v not used in e2

Toy Examples

z := if x ≥ y then x else y

let v = r in (r := v + 42; v)

while (x := x - 1; x > 0) do ()

while (let v = x in x := x - 1; v > 0) do ()

Typing Rules for Expressions
Assignment:

x : ref τ ∈ Γ Γ ` e : τ

Γ ` x := e : unit

Let binding:

Γ ` e1 : τ1 {v : τ1} · Γ ` e2 : τ2

Γ ` let v = e1 in e2 : τ2

Conditional:

Γ ` c : bool Γ ` e1 : τ Γ ` e2 : τ

Γ ` if c then e1 else e2 : τ

Loop:
Γ ` c : bool Γ ` e : unit

Γ ` while c do e : unit

Operational Semantics

Novelties
I Precise the order of evaluation: left to right

I one-step execution has the form

Σ,Π,e Σ′,Π′,e′

I values do not reduce

Operational Semantics

I Assignment

Σ,Π,e Σ′,Π′,e′

Σ,Π, x := e Σ′,Π′, x := e′

Σ,Π, x := val Σ[x ← val],Π, ()

I Let binding

Σ,Π,e1 Σ′,Π′,e′1
Σ,Π, let v = e1 in e2 Σ′,Π′, let v = e′1 in e2

Σ,Π, let v = val in e Σ, {v = val} · Π,e

Operational Semantics, Continued

I Binary operations

Σ,Π,e1 Σ′,Π′,e′1
Σ,Π,e1 + e2 Σ′,Π′,e′1 + e2

Σ,Π,e2 Σ′,Π′,e′2
Σ,Π, val1 + e2 Σ′,Π′, val1 + e′2

val = val1 + val2
Σ,Π, val1 + val2 Σ,Π, val

Operational Semantics, Continued

I Conditional

Σ,Π, c Σ′,Π′, c′

Σ,Π, if c then e1 else e2 Σ′,Π′, if c′ then e1 else e2

Σ,Π, if True then e1 else e2 Σ,Π,e1

Σ,Π, if False then e1 else e2 Σ,Π,e2

I Loop

Σ,Π, while c do e
Σ,Π, if c then (e; while c do e) else ()

Context Rules versus Let Binding

Remark: most of the context rules can be avoided

I An equivalent operational semantics can be defined using
let v = . . . in . . . instead, e.g.:

v1, v2 fresh
Σ,Π,e1 + e2 Σ,Π, let v1 = e1 in let v2 = e2 in v1 + v2

I Thus, only the context rule for let is needed

Type Soundness

Theorem
Every well-typed expression evaluate to a value or execute
infinitely

Classical proof:
I type is preserved by reduction
I execution of well-typed expressions that are not values can

progress

Blocking Semantics: General Ideas

I add assertions in expressions
I failed assertions = “run-time errors”

First step: modify expression syntax with
I new expression: assertion
I adding loop invariant in loops

e ::= assert p (assertion)
| while e invariant I do e (annotated loop)

Toy Examples

z := if x ≥ y then x else y ;

assert z ≥ x ∧ z ≥ y

while (x := x - 1; x > 0)

invariant x ≥ 0 do ();

assert (x = 0)

while (let v = x in x := x - 1; v > 0)

invariant x ≥ -1 do ();

assert (x < 0)

Result value in post-conditions

New addition in the specification language:
I keyword result in post-conditions
I denotes the value of the expression executed

Example:

{ true }

if x ≥ y then x else y

{ result ≥ x ∧ result ≥ y }

Blocking Semantics: Modified Rules

JPKΣ,Π holds
Σ,Π, assert P Σ,Π, ()

JIKΣ,Π holds
Σ,Π, while c invariant I do e

Σ,Π, if c then (e; while c invariant I do e) else ()

Important
Execution blocks as soon as an invalid annotation is met

Soundness of a program

Definition
Execution of an expression in a given state is safe if it does not
block: either terminates on a value or runs infinitely.

Definition
A triple {P}e{Q} is valid if for any state Σ,Π satisfying P, e
executes safely in Σ,Π, and if it terminates, the final state
satisfies Q

Weakest Preconditions Revisited

Goal:
I construct a new calculus WP(e,Q)

Expected property: in any state satisfying WP(e,Q),
I e is guaranteed to execute safely
I if it terminates, Q holds in the final state

New Weakest Precondition Calculus

I Pure terms:
WP(t ,Q) = Q[result ← t]

I Let binding:

WP(let x = e1 in e2,Q) =
WP(e1,WP(e2,Q)[x ← result])

Weakest Preconditions, continued

I Assignment:

WP(x := e,Q) = WP(e,Q[result ← (); x ← result])

I Alternative:

WP(x := e,Q) = WP(let v = e in x := v ,Q)
WP(x := t ,Q) = Q[result ← (); x ← t])

WP: Exercise

WP(let v = x in (x := x + 1; v), x > result) =?

Weakest Preconditions, continued

I Conditional

WP(if e1 then e2 else e3,Q) =
WP(e1, if result then WP(e2,Q) else WP(e3,Q))

I Alternative with let: (exercise!)

Weakest Preconditions, continued

I Assertion

WP(assert P,Q) = P ∧Q
= P ∧ (P ⇒ Q)

(second version useful in practice)
I While loop

WP(while c invariant I do e,Q) =
I∧
∀~v , (I ⇒WP(c, if result then WP(e, I) else Q))[wi ← vi]

where w1, . . . ,wk is the set of assigned variables in
expressions c and e and v1, . . . , vk are fresh logic variables

Soundness of WP

Lemma (Preservation by Reduction)
If Σ,Π |= WP(e,Q) and Σ,Π,e Σ′,Π′,e′ then
Σ′,Π′ |= WP(e′,Q)

Proof: predicate induction of .

Lemma (Progress)
If Σ,Π |= WP(e,Q) and e is not a value then there exists
Σ′,Π,e′ such that Σ,Π,e Σ′,Π′,e′

Proof: structural induction of e.

Corollary (Soundness)
If Σ,Π |= WP(e,Q) then
I e executes safely in Σ,Π.
I if execution terminates, Q holds in the final state

Assume and Check

e ::= assert p (assertion)
| assume p (assumption)
| check p (check)

Assume and Check

JPKΣ,Π holds
Σ,Π,assert P Σ,Π,() WP(assert P,Q) = P&&Q

= P ∧ (P ⇒ Q)
JPKΣ,Π holds

Σ,Π,assume P Σ,Π,() WP(assume P,Q) = P ⇒ Q

Σ,Π,check P Σ,Π,() WP(check P,Q) = P ∧Q

Assert, Assume and Check

JPKΣ,Π holds
Σ,Π,assert P Σ,Π,()

JPKΣ,Π doesn’t hold
Σ,Π,assert P Blocked

JPKΣ,Π holds
Σ,Π,assume P Σ,Π,()

JPKΣ,Π doesn’t hold
Σ,Π,assume P Infeasible

Σ,Π,check P Σ,Π,() Σ,Π,check P Σ,Π,()

States that leads to Infeasible are not taken into account.

Exercise: Restate and prove the soundness theorem

Bibliography

Cook(1978) S. A. Cook. Soundness and completeness of an
axiom system for program verification. SIAM
Journal on Computing, 7(1):70–90, 1978. doi:
10.1137/0207005.

Cousot(1990) P. Cousot. Methods and logics for proving
programs. In J. van Leeuwen, editor, Handbook of
Theoretical Computer Science, volume B, pages
841–993. North-Holland, 1990.

Dijkstra(1975) E. W. Dijkstra. Guarded commands,
nondeterminacy and formal derivation of
programs. Commun. ACM, 18:453–457, August
1975. ISSN 0001-0782. doi:
10.1145/360933.360975.

Bibliography

Floyd(1967) R. W. Floyd. Assigning meanings to programs. In
J. T. Schwartz, editor, Mathematical Aspects of
Computer Science, volume 19 of Proceedings of
Symposia in Applied Mathematics, pages 19–32,
Providence, Rhode Island, 1967. American
Mathematical Society.

Hoare(1969) C. A. R. Hoare. An axiomatic basis for computer
programming. Communications of the ACM, 12
(10):576–580 and 583, Oct. 1969.

Plotkin(2004) G. D. Plotkin. The origins of structural
operational semantics. Journal of Logic and
Algebraic Programming, 60–61:3–15, 2004. doi:
10.1016/j.jlap.2004.03.009.

	Introduction, Short History
	Classical Hoare Logic
	A Simple Programming Language
	Hoare Logic
	Dijkstra's Weakest Preconditions

	Exercises
	``Modern'' Approach, Blocking Semantics
	A ML-like Programming Language
	Blocking Operational Semantics
	Weakest Preconditions Revisited

