
More data types (lists, trees)
Handling Exceptions
Computer Arithmetic

François Bobot1

Cours MPRI 2-36-1 “Preuve de Programme”

17 décembre 2017

1from Claude Marché

Outline

Reminder: labels and ghost variables, function calls and
modularity, termination

Reminder: Advanced Modeling of Programs

Reminder: Programs on Arrays

Modeling Continued: Specifying More Data Types
Product Types
Sum Types
Lists

Exceptions

Application: Computer Arithmetic
Handling Machine Integers
Floating-Point Computations

Outline

Reminder: labels and ghost variables, function calls and
modularity, termination

Reminder: Advanced Modeling of Programs

Reminder: Programs on Arrays

Modeling Continued: Specifying More Data Types
Product Types
Sum Types
Lists

Exceptions

Application: Computer Arithmetic
Handling Machine Integers
Floating-Point Computations

Labels, Ghost Variables

I Labels and ghost variables are handy to refer to past
program states in specifications

Home work from the last lecture:
I Extend the post-condition of Euclid algorithm to express

the Bezout property:

∃a,b, result = x ∗ a + y ∗ b

I Prove the program by adding appropriate ghost local
variables

Use canvas file exo_bezout.mlw

exo_bezout.mlw

Function Call

let fun f (x1 : τ1, . . . , xn : τn) : τ
requires Pre
writes ~w
ensures Post
body Body

WP(f (t1, . . . , tn),Q) = Pre[xi ← ti] ∧
∀~v , (Post[xi ← ti ,wj ← vj ,wj@Old← wj]⇒ Q[wj ← vj])

Modular proof
When calling function f , only the contract of f is visible, not its
body

Soundness Theorem for a Complete Program

Assuming that for each function defined as

let fun f (x1 : τ1, . . . , xn : τn) : τ
requires Pre
writes ~w
ensures Post
body Body

we have
I variables assigned in Body belong to ~w ,
I |= Pre⇒WP(Body,Post)[wi@Old← wi] holds,

then for any formula Q and any expression e,
if Σ,Π |= WP(e,Q) then execution of Σ,Π,e is safe

Remark: (mutually) recursive functions are allowed

Termination

I Loop variants
I Variants for (mutually) recursive function

Example: McCarthy’s 91 Function

f91(n) = if n ≤ 100 then f91(f91(n + 11)) else n − 10

Exercise: find adequate specifications.

let fun f91(n:int): int

requires ?

variant ?

writes ?

ensures ?

body

if n ≤ 100 then f91(f91(n + 11)) else n - 10

Use canvas file mccarthy.mlw

Outline

Reminder: labels and ghost variables, function calls and
modularity, termination

Reminder: Advanced Modeling of Programs

Reminder: Programs on Arrays

Modeling Continued: Specifying More Data Types
Product Types
Sum Types
Lists

Exceptions

Application: Computer Arithmetic
Handling Machine Integers
Floating-Point Computations

mccarthy.mlw

Advanced Modeling of Programs

Direct definitions
I logic functions, predicates with body
I total functions, no arbitrary recursion allowed

Axiomatic definitions
I logic functions, predicates without body
I axioms to specify their behavior
I axiomatic types
I Risk of inconsistency

Lemma functions
I When automated provers fail: Write a program to construct

a proof
I Example: construct witnesses for existential quantification
I Example: proof by induction using recursive functions

Home Work 3

Prove Fermat’s little theorem for case p = 3:

∀x ,∃y .x3 − x = 3y

using a lemma function

Outline

Reminder: labels and ghost variables, function calls and
modularity, termination

Reminder: Advanced Modeling of Programs

Reminder: Programs on Arrays

Modeling Continued: Specifying More Data Types
Product Types
Sum Types
Lists

Exceptions

Application: Computer Arithmetic
Handling Machine Integers
Floating-Point Computations

Programs on Arrays

I applicative maps as an axiomatic type
I array = reference to a pair (length, pure map)
I handling of out-of-bounds index check

val get(a:array α,i:int):α
requires 0 ≤ i < fst(a)

ensures result = select(snd(a),i)

val set(a:array α,i:int,v:α):unit
requires 0 ≤ i < fst(a)

writes a

ensures fst(a) = fst(a@Old) ∧
snd(a) = store(snd(a@Old),i,v)

I a[i] interpreted as a call to get(a,i)

I a[i] := v interpreted as a call to set(a,i,v)

Exercise: Search Algorithms

var a: array real

let fun search(n:int, v:real): int

requires 0 ≤ n

ensures { ? }

= ?

1. Formalize postcondition: if v occurs in a, between 0 and
n − 1, then result is an index where v occurs, otherwise
result is set to −1

2. Implement and prove linear search:
res := −1;
for each i from 0 to n − 1: if a[i] = v then res := i ;
return res

See file lin_search.mlw

Home Work: Binary Search

low = 0; high = n − 1;
while low ≤ high:

let m be the middle of low and high
if a[m] = v then return m
if a[m] < v then continue search between m and high
if a[m] > v then continue search between low and m

See file bin_search.mlw

Home Work: “for” loops

Syntax: for i = e1 to e2 do e
Typing:
I i visible only in e, and is immutable
I e1 and e2 must be of type int, e must be of type unit

Operational semantics:
(assuming e1 and e2 are values v1 and v2)

v1 > v2

Σ,Π, for i = v1 to v2 do e Σ,Π, ()

v1 ≤ v2

Σ,Π, for i = v1 to v2 do e Σ,Π,
(let i = v1 in e);
(for i = v1 + 1 to v2 do e)

Home Work: “for” loops

Propose a Hoare logic rule for the for loop:

{?}e{?}
{?}for i = v1 to v2 do e{?}

Propose a rule for computing the WP:

WP(for i = v1 to v2 invariant I do e,Q) =?

Additional exercise: use a for loop in the linear search example

lin_search.mlw
bin_search.mlw

Home Work: “for” loops

Propose a Hoare logic rule for the for loop:

{I ∧ v1 ≤ i ≤ v2}e{I[i ← i + 1]}
{I[i ← v1] ∧ v1 ≤ v2}for i = v1 to v2 do e{I[i ← v2 + 1]}

Propose a rule for computing the WP:

WP(for i = v1 to v2 invariant I do e,Q) =?

Additional exercise: use a for loop in the linear search example

Outline

Reminder: labels and ghost variables, function calls and
modularity, termination

Reminder: Advanced Modeling of Programs

Reminder: Programs on Arrays

Modeling Continued: Specifying More Data Types
Product Types
Sum Types
Lists

Exceptions

Application: Computer Arithmetic
Handling Machine Integers
Floating-Point Computations

Product Types

I Tuples types are built-in:
type pair = (int, int)

I Record types can be defined:
type point = { x:real; y:real }

I Fields are immutable.
I We allow let with pattern, e.g.

let (a,b) = some pair in ...
let { x = a; y = b } = some point in

I Dot notation for records fields, e.g.
point.x + point.y

Sum Types

I Sum types à la ML:
type t =
| C1 τ1,1 · · · τ1,n1

|
...
| Ckτk ,1 · · · τk ,nk

I Pattern-matching with
match e with
| C1(p1, · · · ,pn1)→ e1

|
...
| Ck (p1, · · · ,pnk)→ ek
end

I Extended pattern-matching, wildcard: _

Recursive Sum Types

I Sum types can be recursive.
I Recursive definitions of functions or predicates

I Must termination (only total functions in the logic)
I In practice in why3: recursive calls only allowed on

structurally smaller arguments.

Sum Types: Example of Lists

type list α = Nil | Cons α (list α)

function append(l1:list α,l2:list α): list α =

match l1 with

| Nil → l2

| Cons(x,l) → Cons(x, append(l,l2))

end

function length(l:list α): int =

match l with

| Nil → 0

| Cons(_,r) → 1 + length r

end

function rev(l:list α): list α =

match l with

| Nil → Nil

| Cons(x,r) → append(rev(r), Cons(x,Nil))

end

“In-place” List Reversal

Exercise: fill the holes below.

val l: ref (list int)

let fun rev_append(r:list int)

variant ? writes ? ensures ?

body

match r with

| Nil → ()

| Cons(x,r) → l := Cons(x,l); rev_append(r)

end

let fun reverse(r:list int)

writes l ensures l = rev r

body ?

See rev.mlw

Binary Trees

type tree α = Leaf | Node (tree α) α (tree α)

Home work: specify, implement, and prove a procedure
returning the maximum of a tree of integers.

(problem 2 of the FoVeOOS verification competition in 2011,
http://foveoos2011.cost-ic0701.org/verification-competition)

rev.mlw
http://foveoos2011.cost-ic0701.org/verification-competition

Outline

Reminder: labels and ghost variables, function calls and
modularity, termination

Reminder: Advanced Modeling of Programs

Reminder: Programs on Arrays

Modeling Continued: Specifying More Data Types
Product Types
Sum Types
Lists

Exceptions

Application: Computer Arithmetic
Handling Machine Integers
Floating-Point Computations

Exceptions

We extend the syntax of expressions with

e ::= raise exn
| try e with exn→ e

with exn a set of exception identifiers, declared as

exception exn <type>

Remark: <type> can be omitted if it is unit

Example: linear search revisited in lin_search_exc.mlw

Operational Semantics
I Values: either constants v or raise exn

Propagation of thrown exceptions:

Σ,Π, (let x = raise exn in e) Σ,Π, raise exn

Reduction of try-with:
Σ,Π,e Σ′,Π′,e′

Σ,Π, (try e with exn→ e′′) Σ′,Π′, (try e′ with exn→ e′′)

Normal execution:

Σ,Π, (try v with exn→ e′) Σ,Π, v

Exception handling:

Σ,Π, (try raise exn with exn→ e) Σ,Π,e

exn 6= exn′

Σ,Π, (try raise exn with exn′ → e) Σ,Π, raise exn

WP Rules

Function WP modified to allow exceptional post-conditions too:

WP(e,Q,exni → Ri)

Implicitly, Rk = False for any exnk 6∈ {exni}.

Extension of WP for simple expressions:

WP(x := t ,Q,exni → Ri) = Q[result← (), x ← t]

WP(assert R,Q,exni → Ri) = R ∧Q

lin_search_exc.mlw

WP Rules

Extension of WP for composite expressions:

WP(let x = e1 in e2,Q,exni → Ri) =
WP(e1,WP(e2,Q,exni → Ri)[result← x],exni → Ri)

WP(if t then e1 else e2,Q,exni → Ri) =
if t then WP(e1,Q,exni → Ri)

else WP(e2,Q,exni → Ri)

WP
(

while c invariant I
do e

,Q,exni → Ri

)
= I ∧ ∀~v ,

(I ⇒ if c then WP(e, I,exni → Ri) else Q)[wi ← vi]
where w1, . . . ,wk is the set of assigned variables in
e and v1, . . . , vk are fresh logic variables.

WP Rules

Exercise: propose rules for

WP(raise exn,Q,exni → Ri)

and
WP(try e1 with exn→ e2,Q,exni → Ri)

WP(raise exnk ,Q,exni → Ri) = Rk

WP((try e1 with exn→ e2),Q,exni → Ri) =

WP
(

e1,Q,
{

exn→WP(e2,Q,exni → Ri)
exni\exn→ Ri

)

Functions Throwing Exceptions

Generalized contract:

val f (x1 : τ1, . . . , xn : τn) : τ
requires Pre
writes ~w
ensures Post
raises E1 → Post1
...
raises En → Postn

Extended WP rule for function call:

WP(f (t1, . . . , tn),Q,Ek → Rk) = Pre[xi ← ti] ∧ ∀~v ,
(Post[xi ← ti ,wj ← vj]⇒ Q[wj ← vj]) ∧∧

k (Postk [xi ← ti ,wj ← vj]⇒ Rk [wj ← vj])

Example: “Defensive” variant of ISQRT

exception NotSquare

let fun isqrt(x:int): int

ensures result ≥ 0 ∧ sqr(result) = x

raises NotSquare → forall n:int. sqr(n) 6= x

body

if x < 0 then raise NotSquare;

let ref res = 0 in

let ref sum = 1 in

while sum ≤ x do

res := res + 1; sum := sum + 2 * res + 1

done;

if sqr(res) 6= x then raise NotSquare;

res

See Why3 version in isqrt_exc.mlw

isqrt_exc.mlw

Home Work

I Re-implement and prove linear search in an array, using an
exception to exit immediately when an element is found.
(see lin_search_exc.mlw)

I Implement and prove binary search using also a
immediate exit:

low = 0; high = n − 1;
while low ≤ high:

let m be the middle of low and high
if a[m] = v then return m
if a[m] < v then continue search between m and high
if a[m] > v then continue search between low and m

(see bin_search_exc.mlw)

Outline

Reminder: labels and ghost variables, function calls and
modularity, termination

Reminder: Advanced Modeling of Programs

Reminder: Programs on Arrays

Modeling Continued: Specifying More Data Types
Product Types
Sum Types
Lists

Exceptions

Application: Computer Arithmetic
Handling Machine Integers
Floating-Point Computations

Computers and Number Representations

I 32-, 64-bit signed integers in two-complement: may
overflow

I 2147483647 + 1→ −2147483648
I 1000002 → 1410065408

I floating-point numbers (32-, 64-bit):
I overflows

I 2× 2× · · · × 2→ +inf
I −1/0→ −inf
I 0/0→ NaN

I rounding errors
I 0.1 + 0.1 + · · ·+ 0.1︸ ︷︷ ︸

10times

= 1.0→ false

(because 0.1→ 0.100000001490116119384765625 in
32-bit)

See also arith.c

Some Numerical Failures

(see more at
http://catless.ncl.ac.uk/php/risks/search.php?query=rounding)

I 1991, during Gulf War 1, a Patriot system fails to intercept
a Scud missile: 28 casualties.

I 1992, Green Party of Schleswig-Holstein seats in
Parliament for a few hours, until a rounding error is
discovered.

I 1995, Ariane 5 explodes during its maiden flight due to an
overflow: insurance cost is $500M.

I 2007, Excel displays 77.1× 850 as 100000.

lin_search_exc.mlw
bin_search_exc.mlw
arith.c
http://catless.ncl.ac.uk/php/risks/search.php?query=rounding

Some Numerical Failures

I 1991, during Gulf War 1, a Patriot system fails to intercept
a Scud missile: 28 casualties.

Internal clock ticks every 0.1 second.
Time is tracked by fixed-point arith.: 0.1 ' 209715 · 2−24.
Cumulated skew after 24h: −0.08s, distance: 160m.
System was supposed to be rebooted periodically.

I 2007, Excel displays 77.1× 850 as 100000.

Bug in binary/decimal conversion.
Failing inputs: 12 FP numbers.
Probability to uncover them by random testing: 10−18.

Integer overflow: example of Binary Search

I Google “Read All About It: Nearly All Binary Searches and
Mergesorts are Broken”

let l = ref 0 in

let u = ref (a.length - 1) in

while l ≤ u do

let m = (l + u) / 2 in

...

l + u may overflow with large arrays!

Goal
prove that a program is safe with respect to overflows

Target Type: int32

I 32-bit signed integers in two-complement representation:
integers between −231 and 231 − 1.

I If the mathematical result of an operation fits in that range,
that is the computed result.

I Otherwise, an overflow occurs.
Behavior depends on language and environment:
modulo arith, saturated arith, abrupt termination, etc.

A program is safe if no overflow occurs.

Safety Checking

Idea: replace all arithmetic operations by abstract functions
with preconditions. x + y becomes int32_add(x , y).

val int32_add(x: int, y: int): int

requires -2^31 ≤ x + y < 2^31

ensures result = x + y

Unsatisfactory: range contraints of integer must be added
explicitly everywhere

Safety Checking, Second Attempt

Idea:
I replace type int with an abstract type int32
I introduce a projection from int32 to int
I axiom about the range of projections of int32 elements
I replace all operations by abstract functions with

preconditions

type int32

function to_int(x: int32): int

axiom bounded_int32:

forall x: int32. -2^31 ≤ to_int(x) < 2^31

val int32_add(x: int32, y: int32): int32

requires -2^31 ≤ to_int(x) + to_int(y) < 2^31

ensures to_int(result) = to_int(x) + to_int(y)

Binary Search with overflow checking

See bin_search_int32.mlw

Application
Used for translating mainstream programming language into
Why3:
I From C to Why3: Frama-C, Jessie plug-in

See bin_search.c

I From Java to Why3: Krakatoa
I From Ada to Why3: Spark2014

Floating-Point Arithmetic

I Limited range⇒ exceptional behaviors.
I Limited precision⇒ inaccurate results.

Floating-Point Data

IEEE-754 Binary Floating-Point Arithmetic.
Width: 1 + we + wm = 32, or 64, or 128.
Bias: 2we−1 − 1. Precision: p = wm + 1.

A floating-point datum
sign s biased exponent e′ (we bits) mantissa m (wm bits)

represents
I if 0 < e′ < 2we − 1, the real (−1)s · 1.m′ · 2e′−bias, normal
I if e′ = 0,

I ±0 if m′ = 0, zeros
I the real (−1)s · 0.m′ · 2−bias+1 otherwise, subnormal

I if e′ = 2we − 1,
I (−1)s · ∞ if m′ = 0, infinity
I Not-a-Number otherwise. NaN

bin_search_int32.mlw
bin_search.c

Floating-Point Data

1 11000110 10010011110000111000000
s e f
↓ ↓ ↓

(−1)s × 2e−B × 1.f

(−1)1 × 2198−127 × 1.100100111100001110000002

−254 × 206727 ≈ −3.7× 1021

Semantics for the Finite Case

IEEE-754 standard
A floating-point operator shall behave as if it was
first computing the infinitely-precise value
and then rounding it so that it fits in the destination
floating-point format.

Rounding of a real number x :

Overflows are not considered when defining rounding:
exponents are supposed to have no upper bound!

Specifications, main ideas

Same as with integers, we specify FP operations
so that no overflow occurs.

constant max : real = 0x1.FFFFFEp127

predicate in_float32 (x:real) = abs x ≤ max

type float32

function to_real(x: float32): real

axiom float32_range: forall x: float32. in_float32 (to_real x)

function round32(x: real): real

(* ... axioms about round32 ... *)

function float32_add(x: float32, y: float32): float32

requires in_float32(round32(to_real x + to_real y))

ensures to_real result = round32 (to_real x + to_real y)

Specifications in practice

I Several possible rounding modes
I many axioms for round32, but incomplete anyway
I Specialized prover: Gappa http://gappa.gforge.inria.fr/

Demo: clock_drift.c

http://gappa.gforge.inria.fr/
clock_drift.c

Deductive verification nowadays
More native support in SMT solvers:
I bitvectors supported by CVC4, Z3, others
I theory of floats supported by Z3, MathSAT

Using such a support for deductive program verification
remains an open research topic
I Issues when bitvectors/floats are mixed with other

features: conversions, arrays, quantification

Fumex et al.(2016) C. Fumex, C. Dross, J. Gerlach, C. Marché.
Specification and proof of high-level functional
properties of bit-level programs. 8th NASA Formal
Methods Symposium, LNCS 9690 Science

Boldo, Marché (2011) S. Boldo, C. Marché. Formal verification of
numerical programs: from C annotated programs to
mechanical proofs. Mathematics in Computer Science,
5:377–393

	Reminder: labels and ghost variables, function calls and modularity, termination
	Reminder: Advanced Modeling of Programs
	Reminder: Programs on Arrays
	Modeling Continued: Specifying More Data Types
	Product Types
	Sum Types
	Lists

	Exceptions
	Application: Computer Arithmetic
	Handling Machine Integers
	Floating-Point Computations

