
Aliasing Issues:
Call by reference, Pointer programs

Bobot François

Cours MPRI 2-36-1 “Preuve de Programme”

7 janvier 2019

Reminder of the last lecture

I Additional features of the specification language
I Abstract Types: e.g. sets, maps
I Product Types: records and such
I Sum Types, e.g. lists

I Programs on lists
I Computer Arithmetic: bounded integers, floating-point

numbers
I Additional feature of the programming language

I Exceptions
I Function contracts extended with exceptional

post-conditions

Home Work from previous lecture

I Re-implement and prove linear search in an array, using an
exception to exit immediately when an element is found.
(see lin_search_exc.mlw)

I Implement and prove binary search using also a
immediate exit:

low = 0; high = n − 1;
while low ≤ high:

let m be the middle of low and high
if a[m] = v then return m
if a[m] < v then continue search between m and high
if a[m] > v then continue search between low and m

(see bin_search_exc.mlw)

Introducing Aliasing Issues

Compound data structures can be modeled using expressive
specification languages
I Defined functions and predicates
I Product types (records)
I Sum types (lists, trees)
I Axiomatizations (arrays, sets)

Important points:
I pure types, no internal “in-place” assignment
I Mutable variables = references to pure types

No Aliasing

lin_search_exc.mlw
bin_search_exc.mlw

Aliasing

Aliasing = two different “names” for the same mutable data

Two sub-topics of today’s lecture:
I Call by reference
I Pointer programs

Outline

Call by Reference

Pointer Programs

Need for call by reference

Example: stacks of integers

type stack = list int

val s:ref stack

let fun push(x:int):unit

writes s

ensures s = Cons(x,s@Old)

body ...

let fun pop(): int

requires s 6= Nil

writes s

ensures result = head(s@Old) ∧ s = tail(s@Old)

Need for call by reference

If we need two stacks in the same program:
I We don’t want to write the functions twice!

We want to write

type stack = list int

let fun push(s:ref stack,x:int): unit

writes s

ensures s = Cons(x,s@Old)

...

let fun pop(s:ref stack):int)

...

Call by Reference: example

val s1,s2: ref stack

let fun test():

writes s1, s2

ensures result = 13 ∧ head(s2) = 42

body push(s1,13); push(s2,42); pop(s1)

I See file stack1.mlw

Aliasing problems

let fun test(s3,s4: ref stack) : unit

writes s3, s4

ensures { head(s3) = 13 ∧ head(s4) = 42 }

body push(s3,13); push(s4,42)

let fun wrong(s5: ref stack) : int

writes s5

ensures { head(s5) = 13 ∧ head(s5) = 42 }

something’s wrong !?

body test(s5,s5)

Aliasing is a major issue
Deductive Verification Methods like Hoare logic, Weakest
Precondition Calculus implicitly require absence of aliasing

Syntax

I Declaration of functions: (references first for simplicity)

let fun f (y1 : ref τ1, . . . , yk : ref τk , x1 : τ ′1, . . . , xn : τ ′n):
· · ·

I Call:

f (z1, . . . , zk ,e1, . . . ,en)

where each zi must be a reference

Operational Semantics

Intuitive semantics, by substitution:

Π′ = {xi ← JtiKΣ,Π} Σ,Π′ |= Pre Body ′ = Body [yj ← zj]

Σ,Π, f (z1, . . . , zk , t1, . . . , tn) Σ,Π, (Old : frame(Π′,Body ′,Post))

I The body is executed, where each occurrence of reference
parameters are replaced by the corresponding reference
argument.

I Not a “practical” semantics, but that’s not important. . .

stack1.mlw

Operational Semantics

Variant: Semantics by copy/restore:

Σ′ = Σ[yj ← Σ(zj)] Π′ = {xi ← JtiKΣ,Π} Σ,Π′ |= Pre
Σ,Π, f (z1, . . . , zk , t1, . . . , tn) Σ′,Π, (Old : frame(Π′,Body,Post))

Σ,Π′ |= P[result← v] Σ′ = Σ[zj ← Σ(yj)]

Σ,Π, (frame(Π′, v ,P)) Σ′,Π, v

Warning: not the same semantics !

Difference in the semantics

val g : ref int

let fun f(x:ref int):unit

body x := 1; x := g+1

let fun test():unit

body g:=0; f(g)

After executing test:
I Semantics by substitution: g = 2

I Semantics by copy/restore: g = 1

Aliasing Issues (1)

let fun f(x:ref int, y:ref int):

writes x, y

ensures x = 1 ∧ y = 2

body x := 1; y := 2

val g : ref int

let fun test():

body

f(g,g);

assert g = 1 ∧ g = 2 (* ???? *)

I Aliasing of reference parameters

Aliasing Issues (2)

val g1 : ref int

val g2 : ref int

let fun p(x:ref int):

writes g1, x

ensures g1 = 1 ∧ x = 2

body g1 := 1; x := 2

let fun test():

body

p(g2); assert g1 = 1 ∧ g2 = 2; (* OK *)

p(g1); assert g1 = 1 ∧ g1 = 2; (* ??? *)

I Aliasing of a global variable and reference parameter

Aliasing Issues (3)

val g : ref int

val fun f(x:ref int):unit

writes x

ensures x = g + 1

(* body x := 1; x := g+1 *)

let fun test():unit

ensures { g = 1 or 2 ? }

body g := 0; f(g)

I Aliasing of a read reference and a written reference

Aliasing Issues (3)

New need in specifications
Need to specify read references in contracts

val g : ref int

val f(x:ref int):unit

reads g (* new clause in contract *)

writes x

ensures x = g + 1

(* body x := 1; x := g+1 *)

let fun test():unit

ensures { g = ? }

body g := 0; f(g)

I See file stack2.mlw

Typing: Alias-Freedom Conditions

For a function of the form

f (y1 : ref τ1, ..., yk : ref τk , ...) : τ :
writes ~w
reads ~r

Typing rule for a call to f :

. . . ∀ij , i 6= j → zi 6= zj ∀i , j , zi 6= wj ∀i , j , zi 6= rj

... ` f (z1, . . . , zk , ...) : τ

I effective arguments zj must be distinct
I effective arguments zj must not be read nor written by f

Proof Rules

Thanks to restricted typing:
I Semantics by substitution and by copy/restore coincide
I Hoare rules remain correct
I WP rules remain correct

stack2.mlw

New references

I Need to return newly created references
I Example: stack continued

let fun create():ref stack

ensures result = Nil

body (ref Nil)

I Typing should require that a returned reference is always
fresh

More on aliasing control using static typing: [Filliâtre, 2016]

Outline

Call by Reference

Pointer Programs

Pointer programs

I We drop the hypothesis “no reference to reference”
I Allows to program on linked data structures. Example (in

the C language):

struct List { int data; linked_list next; }

*linked_list;

while (p <> NULL) { p->data++; p = p->next }

I “In-place” assignment
I References are now values of the language: “pointers” or

“memory addresses”

We need to handle aliasing problems differently

Syntax

I For simplicity, we assume a language with pointers to
records

I Access to record field: e→f

I Update of a record field: e→f := e’

Operational Semantics

I New kind of values: loc = the type of pointers
I A special value null of type loc is given
I A program state is now a pair of

I a store which maps variables identifiers to values
I a heap which maps pairs (loc, field name) to values

I Memory access and updates should be proved safe (no
“null pointer dereferencing”)

I For the moment we forbid allocation/deallocation
[See lecture next week]

Component-as-array trick

[Bornat, 2000]

If
I a program is well-typed
I The set of all field names are known

then the heap can be also seen as a finite collection of maps,
one for each field name:
I map for a field of type τ maps loc to values of type τ

This “trick” allows to encode pointer programs into our previous
programming language:
I Use maps indexed by locs (instead of integers for arrays)

Component-as-array model
type loc

constant null : loc

val acc(field: ref (map loc α),l:loc) : α
requires l 6= null

reads field

ensures result = select(field,l)

val upd(field: ref (map loc α),l:loc,v:α):unit
requires l 6= null

writes field

ensures field = store(field@Old,l,v)

Encoding:
I Access to record field: e→f becomes acc(f,e)

I Update of a record field:
e→f := e’ becomes upd(f,e,e’)

Example

I In C

struct List { int data; linked_list next; }

*linked_list;

while (p <> NULL) { p->data++; p = p->next }

I Encoded as

val data: ref (map loc int)

val next: ref (map loc loc)

while p 6= null do

upd(data,p,acc(data,p)+1);

p := acc(next,p)

In-place List Reversal

A la C/Java:

linked_list reverse(linked_list l) {

linked_list p = l;

linked_list r = null;

while (p != null) {

linked_list n = p->next;

p->next = r;

r = p;

p = n

}

return r;

}

In-place Reversal in our Model

let fun reverse (l:loc) : loc =

let p = ref l in

let r = ref null in

while (p 6= null) do

let n = acc(next,p) in

upd(next,p,r);

r := p;

p := n

done;

r

Goals:
I Specify the expected behavior of reverse
I Prove the implementation

Specifying the function

Predicate list_seg(p,next ,pM ,q) :

p points to a list of nodes pM that ends at q

p = p0
next7→ p1 · · ·

next7→ pk
next7→ q

pM = Cons(p0,Cons(p1, · · ·Cons(pk ,Nil) · · ·))

pM is the model list of p

predicate list_seg (p:loc, next:map loc loc,

pM:list loc, q:loc) =

match pM with

| Nil → p = q

| Cons h t →
p 6= null ∧ h=p ∧ list_seg(select(next,p),next,t,q)

Specification

I pre: input l well-formed:
∃lM .list_seg(l ,next , lM ,null)

I post: output well-formed:
∃rM .list_seg(result ,next , rM ,null)

and
rM = rev(lM)

Issue: quantification on lM is global to the function
I Use ghost variables

Annotated In-place Reversal

let fun reverse (l:loc) (ghost lM:list loc) : loc =

requires list_seg(l,next,lM,null)

writes next

ensures list_seg(result,next,rev(lM),null)

body

let p = ref l in

let r = ref null in

while (p 6= null) do

let n = acc(next,p) in

upd(next,p,r);

r := p;

p := n

done;

r

See file linked_list_rev.mlw

In-place Reversal: loop invariant

while (p 6= null) do

let n = acc(next,p) in

upd(next,p,r);

r := p;

p := n

Local ghost variables pM , rM

list_seg(p,next ,pM ,null)

list_seg(r ,next , rM ,null)

append(rev(pM), rM) = rev(lM)

Needed lemmas

To prove invariant list_seg(p,next ,pM ,null), we need to show
that list_seg remains true when next is updated:

lemma list_seg_frame: forall next1 next2:map loc loc,

p q r v: loc, pM:list loc.

list_seg(p,next1,pM,q) ∧
next2 = store(next1,r,v) ∧
not mem(r,pM) → list_seg(p,next2,pM,q)

This is an instance of a general frame property

Frame property

For a predicate P, the frame of P is the set of memory locations
fr(P) that P depends on.

Frame property
P is invariant under mutations outside fr(P)

H ` P H ∩ fr(P) = H ′ ∩ fr(P)

H ′ ` P

See also [Kassios, 2006]

linked_list_rev.mlw

Needed lemmas

I To prove invariant list_seg(p,next ,pM ,null), we need to
show that list_seg remains true when next is updated:

I But to apply the frame lemma, we need to show that a path
going to null cannot contain repeated elements

lemma list_seg_no_repet:

forall next:map loc loc, p: loc, pM:list loc.

list_seg(p,next,pM,null) → no_repet(pM)

Needed lemmas

I To prove invariant list_seg(r ,next , rM ,null), we need the
frame property

I Again, to apply the frame lemma, we need to show that
pM , rM remain disjoint : it is an additional invariant

Exercise

The algorithm that appends two lists in place follows this
pseudo-code:

append(l1,l2 : loc) : loc

if l1 is empty then return l2;

let ref p = l1 in

while p→next is not null do p := p→ next;

p → next := l2;

return l1

1. Specify a post-condition giving the list models of both
result and l2 (add any ghost variable needed)

2. Which pre-conditions and loop invariants are needed to
prove this function?

See linked_list_app.mlw

Bibliography

Aliasing control using static typing
[Filliâtre, 2016] J.-C. Filliâtre, L. Gondelman, A. Paskevich. A

Pragmatic Type System for Deductive Verification,
2016. (see also Gondelman’s PhD thesis)

Component-as-array modeling
[Bornat, 2000] Richard Bornat, Proving Pointer Programs in

Hoare Logic, Mathematics of Program
Construction, 102–126, 2000

[Kassios, 2006] I. Kassios. Dynamic frames: Support for
framing, dependencies and sharing without
restrictions, International Symposium on Formal
Methods.

linked_list_app.mlw

Advertising next lectures

I Reasoning on pointer programs using the
component-as-array trick is complex

I need to state and prove frame lemmas
I need to specify many disjointness properties
I even harder is the handling of memory allocation

I Separation Logic is another approach to reason on heap
memory

I memory resources explicit in formulas
I frame lemmas and disjointness properties are internalized

Schedule

I Lecture on January 14th for the project
I Lecture on January 21th by Jean-Marie Madiot
I February 22th, deadline for sending your project solution
I Written exam: March ??th, 16:15, room 1012

	Call by Reference
	Pointer Programs

